Identification of the metabolites of roxithromycin in humans.

نویسندگان

  • D Zhong
  • X Li
  • A Wang
  • Y Xu
  • S Wu
چکیده

The semisynthetic antibiotic roxithromycin (RXM) exists in an (E)-configuration. Metabolites of RXM in the bile of four cholecystectomy patients with T-tube drainage and in the urine and plasma of four healthy volunteers after single oral doses of 150 mg of RXM were investigated. A total of 15 metabolites were found in bile, urine, and plasma by HPLC with ion trap mass spectrometric and electrochemical detection. These metabolites were identified as descladinose derivative of RXM (M1), erythromycin-oxime (M2), N-, O-, and N,O-di-demethylated derivatives of RXM (M3, M4, and M6), and N-mono- and N-di-demethylated derivatives of erythromycin-oxime (M5 and M7), as well as the (Z)-isomers (M8-M15) of RXM and metabolites M1 to M7, respectively. Structures of six major metabolites (M1-M4, M8, and M10) were established by chromatographic and mass spectrometric determination and comparison with synthesized standards. The stability of RXM and the six synthesized substances was investigated to exclude artifact products. These results, together with previous findings, suggest that biotransformation pathways elucidated for RXM include: 1) isomerization of RXM derivatives, from E-isomer to Z-isomer; 2) O-demethylation; 3) N-demethylation; 4) hydrolysis of the cladinose moiety; and 5) dealkylation of the oxime ether side chain. Secondary metabolism via these pathways was also evidenced. The O-demethylation and isomerization of RXM derivatives represent two novel biotransformation pathways recovered for RXM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin.

Roxithromycin has been shown to be a relatively weak inhibitor of cytochrome P450 (P450 or CYP)-dependent drug oxidations, compared with troleandomycin. The potential for roxithromycin and its major metabolites found in human urine [namely the decladinosyl derivative (M1), O-dealkyl derivative (M2), and N-demethyl derivative (M3)] to inhibit testosterone 6beta-hydroxylation after metabolic acti...

متن کامل

COMPARATIVE STUDIES OF IN VITRO INHIBITION OF CYTOCHROME P450 3A4- DEPENDENT TESTOSTERONE 6b-HYDROXYLATION BY ROXITHROMYCIN AND ITS METABOLITES, TROLEANDOMYCIN, AND ERYTHROMYCIN

Roxithromycin has been shown to be a relatively weak inhibitor of cytochrome P450 (P450 or CYP)-dependent drug oxidations, compared with troleandomycin. The potential for roxithromycin and its major metabolites found in human urine [namely the decladinosyl derivative (M1), O-dealkyl derivative (M2), and N-demethyl derivative (M3)] to inhibit testosterone 6b-hydroxylation after metabolic activat...

متن کامل

Identification and toxigenic potential of a cyanobacterial strain (Stigomena sp.)

Cyanobacteria are well known for their production of a multitude of highly toxic substances . The genus Stigomena is regarded as good candidates for producing biologically active secondary metabolites, which are highly toxic to humans and other animals. The carcass of a dog was found at the shore of Lake Ali-Abad, Iran. Biomass from the discovery site appeared to be of cyanobacterial nature. We...

متن کامل

Isolation and Identification of Flavonol Glycosides from Lathyrus Armenus (Boiss. & Huet)

In the last five decades study on plant secondary metabolites have been increasing. Higher plants with a wide range of secondary metabolites have been very important in the search of new therapeutic agents. Flavonoids are most widely distributed secondary natural metabolites that found in plants which occuring in free forms or as glycosides with polyphenolic structure. In this study secondary m...

متن کامل

Identification of biological secondary metabolites in three Penicillium species, P. goditanum, P. moldavicum, and P. corylophilum

Microorganisms are important components of soil. Some soil filamentous fungi such asPenicilium produce many bioactive small molecules, or secondary metabolites, that range frombeneficial bioactive compounds to harmful toxins. In this study, the metabolites of threepenicillium species (P. goditanum, P. moldavicum and P. corylophilum) were extracted byadding ethyl acetate to liquid cultures. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2000